countably many - definizione. Che cos'è countably many
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è countably many - definizione

SET WITH THE SAME CARDINALITY AS THE SET OF NATURAL NUMBERS
Countably infinite; Countable sets; Countable; Countably; Denumerable; Countably many; Countability; Denumerability; Countably infinite set; Denumerable Set; Denumerably Infinite; Countable space; Countable infinity; Denumerable set; Countable infinite; Countable Set; Infinitely countable; Infinitely countable set; Listable infinity
  • Bijective mapping from integer to even numbers
  • Enumeration for countable number of countable sets
  • The [[Cantor pairing function]] assigns one natural number to each pair of natural numbers

countably many         
Countable         
·adj Capable of being numbered.
denumerable         
[d?'nju:m(?)r?b(?)l]
¦ adjective Mathematics able to be counted by one-to-one correspondence with the set of integers.
Derivatives
denumerability noun
denumerably adverb
Origin
early 20th cent.: from late L. denumerare 'count out'.

Wikipedia

Countable set

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite.

The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers.